MBAOver30 GMAT Quant Practice #1

gmatofficialIn the past, several people have asked me to publish advice and help on the dreaded GMAT exam. When I was applying, I had zero time to offer this kind of help.

Now, I am able to provide some occasional practice questions and solutions based on having slightly more time than I did before and some generous friends of mine who have offered to pony up free questions and answers.

Here’s your first batch; I hope that it helps!

For more GMAT help, inquire here.

PRACTICE PROBLEM 1A

Which of the following is equivalent to \frac{{{a}^{100}}-{{b}^{100}}}{{{a}^{50}}-{{b}^{50}}} for all values of a and b for which the expression is defined?

(A) a2+b2          (B) a2-b2         (C) a50+b50         (D) a50-b50          (E) (ab)2

Solution:

Notice that a100-b100  is in the form of a difference of squares because a100 is the square of a50 and b100 is the square of b50. Thus {{a}^{100}}-{{b}^{100}}={{\left( {{a}^{50}} \right)}^{2}}-{{\left( {{b}^{50}} \right)}^{2}}=\left( {{a}^{50}}-{{b}^{50}} \right)\left( {{a}^{50}}+{{b}^{50}} \right).

\Rightarrow \frac{{{a}^{100}}-{{b}^{100}}}{{{a}^{50}}-{{b}^{50}}}=\frac{{{\left( {{a}^{50}} \right)}^{2}}-{{\left( {{b}^{50}} \right)}^{2}}}{{{a}^{50}}-{{b}^{50}}}

=\frac{\left( {{a}^{50}}-{{b}^{50}} \right)\left( {{a}^{50}}+{{b}^{50}} \right)}{{{a}^{50}}-{{b}^{50}}}

={{a}^{50}}+{{b}^{50}}

Answer: C

PRACTICE PROBLEM 1B

If p and q are integers greater than zero, what is the value of pq?

1) The least common multiple of p and q is 240.

2) The greatest common factor of p and q is 8.

Solution:

Question Stem Analysis:

We need to determine the value of pq.

Statement One Alone:

Þ The least common multiple of p and q is 240.

This tells us the smallest number that both p and q will divide into is 240. This is not enough information to determine the value of pq because there are multiple values of p and q that have an LCM of 240. For example, 15 and 16 have an LCM of 240, and 60 and 80 have an LCM of 240. Statement one alone is not sufficient.

Eliminate answer choices A and D.

Statement Two Alone:

Þ The greatest common factor of p and q is 8.

This tells us the largest number that will divide into p and q is 8. That is, 8 is the largest factor that p and q share. This is not enough information to determine the value of pq because there are multiple values of p and q with a GCF of 8. For example, the GCF of 16 and 24 is 8, and so is the GCF of 24 and 32. Statement two alone is not sufficient.

Eliminate answer choice B.

Statements One and Two Together:

It must be true that LCM(p, q) x GCF(p, q) = pq. Thus, pq = 240 ´ 8 = 1,920. Both statements together are sufficient to answer the question.

Answer: C

For more GMAT help, inquire here.

About these ads
, ,

About mbaover30

Wharton c/o 2015 MBA Candidate and blogger

View all posts by mbaover30

Subscribe to the MBA Over 30 Blog

Subscribe to our RSS feed and social profiles to receive updates.

3 Comments on “MBAOver30 GMAT Quant Practice #1”

  1. Samheeta Says:

    thanks! look forward for more…..

    Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 419 other followers

%d bloggers like this: